第422章 徐教授,我有一些疑问

“徐教授,如果只是理论值的话,这个模型会不会缺乏足够的验证?”

“先观察半个月,如果数据不达标的话,我们再对模型进行更改。”

其实徐佑的信心是非常足的,通过徐佑大脑仿真模拟的结果,这个模型的准确率,甚至要比徐佑给出的数据更高。

徐佑也很理解他们有怀疑的心理,毕竟如果按照正常的程序,肯定是需要进行多次的验证、修改的。

“我同意徐教授的说法,等过几天就知道模型的预测准确率了。”韩书斌说道。

即使韩书斌也无法理解,徐佑是如何得出模型预测的理论值的。

但只要这个成果是出自于徐佑,就没有什么值得怀疑的了。

做好了天气预测的模型之后,徐佑紧接着对资源分配的任务进行研究。

相比于天气预测,资源分配问题的偶然性要小很多,主要考察的还是量子计算机的计算能力。

比如说,在能源调配方面,通过电网提供的数据,预测用电负载,进而提供预测性维护措施,给出精准的电力供需解决方案。

或者在风力发电领域,根据历史发电数据、天气预报的信息,来构建和训练神经网络模型,优化风力发电的方案,提升风力发电的效率。

两天的时间过去,算经人工智能已经学会了解决各种资源分配问题。

相对于之前的模型,算经人工智能可以提升百分之二十到五十不等的效率,让资源分配得更加的合理。

而随着这两天过去,算经人工智能预测天气的准确率,也可以得到验证了。

“徐教授,我们这两天对世界各地天气预测的准确率,达到了999。其中预测不准确的位置,也有很多是进行了人工降雨等人为的行为,影响了我们的预测准确性。”一位项目组的成员说道。

这样的准确率,意味着算经人工智能预测一千次天气,才会有一次的失误。

这对于本来就存在很多偶然性的天气预报来说,已经是一个非常高的数据了。

()